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ABSTRACT
RGB-D salient object detection (SOD) aims to identify the most
conspicuous objects in a scene with the incorporation of depth
cues. Existing methods mainly rely on CNNs, limited by the local
receptive fields, or Vision Transformers that suffer from the cost of
quadratic complexity, posing a challenge in balancing performance
and computational efficiency. Recently, state space models (SSM),
Mamba, have shown great potential for modeling long-range depen-
dency with linear complexity. However, directly applying SSM to
RGB-D SOD may lead to deficient local semantics as well as the in-
adequate cross-modality fusion. To address these issues, we propose
a Local Emphatic and Adaptive Fusion state space model (LEAF-
Mamba) that contains two novel components: 1) a local emphatic
state space module (LE-SSM) to capture multi-scale local dependen-
cies for both modalities. 2) an SSM-based adaptive fusion module
(AFM) for complementary cross-modality interaction and reliable
cross-modality integration. Extensive experiments demonstrate
that the LEAF-Mamba consistently outperforms 16 state-of-the-art
RGB-D SOD methods in both efficacy and efficiency. Moreover,
our method can achieve excellent performance on the RGB-T SOD
task, proving a powerful generalization ability. Our code is publicly
available at https://github.com/LanhooNg/LEAF-Mamba.

CCS CONCEPTS
• Computing methodologies → Interest point and salient
region detections.
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1 INTRODUCTION
Salient object detection (SOD) is one of the fundamental vision
computing tasks, aiming to pinpoint the most prominent objects in
an image. Yet RGB SOD [39, 52, 66, 75] may struggle in challenging
scenarios such as complex backgrounds and similar appearances
between objects and their surroundings. Thus, depth data, with
affluent spatial structure information, is naturally utilized as a sup-
plementary input in addition to the RGB image for accurate saliency
prediction, resulting in the task of RGB-D SOD [44, 85]. Numerous
prior methods have been proposed for RGB-D SOD. Early methods
predominantly rely on the convolutional neural networks (CNNs)
for single-modality representation and cross-modality fusion, focus-
ing on discriminative modeling [9, 81], feature fusion [19, 28, 35, 80],
information optimization [2, 30], model lightweighting [51, 74, 84].
However, CNN-based methods inherently suffer from the limited
receptive field of convolutional operation, posing challenges for
capturing long-range dependencies. To overcome this, a series of
Transformer-based methods [6, 12, 54] are developed, leveraging
the self-attention mechanism [59] for global context modeling, thus
achieving the state-of-the-art (SoTA). Nevertheless, Transformers
can be constrained by high computational complexity due to the
quadratic growth of resources with the increase in tokens, sacrific-
ing efficiency. While some attempts [42, 48] improve the efficiency
by reducing the dimension of processing features, they compro-
mise the extent of the receptive fields. Therefore, achieving high
performance meanwhile maintainingmodel efficiency becomes
the key bottleneck of RGB-D SOD. Figure 1 compares the existing
RGB-D SOD research in these two dimensions.

Recently, the newly merged state space models (SSMs), especially
Mamba [26], have shown great potential for modeling long-range
dependency with linear complexity, achieving excellent perfor-
mance with prominent efficiency advantage in various visual tasks
[21–23, 71–73], such as image classification [41, 88], video analysis
[36] and pathological diagnosis [46, 69, 70, 79]. One may directly
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Figure 1: The comparisons with baselines on RGB-D SOD,
with respect to efficacy and efficiency. The accuracy indicates
the average 𝐹𝛽 on NJUD [32], NLPR [49] and STERE [47].

integrate SSM backbone for RGB-D SOD, by modeling the 2D selec-
tive scan (SS2D) mechanism to process vision data, i.e., VMamba
[41]. Despite bridging 1D array scanning and 2D plane traversal, it
struggles with maintaining the proximity of adjacent tokens, which
is critical for local representation modeling in RGB-D SOD. While
the windowed selective scan strategy might be helpful [29, 61], it
still fails to capture the multi-scale information due to the fixed
window size. Besides, current SSM-based methods tend to treat
the RGB and depth features equally during the process of inter-
mediate fusion [25, 60], while, unfortunately, they largely ignore
the cross-modality complementarity and single-modality reliability
evidently.

This work is dedicated to addressing both the efficacy and effi-
ciency bottlenecks in existing RGB-D SOD. We introduce a novel
Local Emphatic and Adaptive Fusion SSM system, namely LEAF-
Mamba, as shown in Figure 2. First, a local emphatic state space
module (LE-SSM) is proposed to enrich multi-scale local informa-
tion in intermediate features of each modality via the multi-scale
windowed 2D selective scan (MSW-SS2D). Different from existing
SS2D [41], our MSW-SS2D adopts a four-scale windowed scanning
mechanism in four ways for spatial domain traversal. As such, ad-
jacent tokens are fully aggregated in multi-scale windows for local
modeling without extra computational cost. Second, an SSM-based
adaptive fusion module (AFM) is devised for cross-modality in-
teraction and integration at multiple stages. Specifically, the AFM
incorporates a cross-modality second-order pooling (CSoP) layer to
compute the modality-specific similarity between RGB and depth
features. Based on this, the AFM selects the discriminative regions
for cross-modality interaction as well as the similar regions for
cross-modality fusion under the paradigm of SSM. In this way, our
system achieves complementary interplay and reliable integration
of two modalities in an attentive manner. Attributing to the compre-
hensive feature representation, robust cross-modality fusion and

efficient SSM, our LEAF-Mamba delivers great performance with a
relatively low computational cost, as depicted in Figure 1.

Experimentally, we validate our method on seven RGB-D SOD
benchmarks including NJUD [32], NLPR [49], SIP [18], STERE [47],
SSD [87], LFSD [37] and DUT-D [50], where the results demonstrate
its superiority over 16 SoTA methods in terms of both efficacy and
efficiency. Particularly, LEAF-Mamba reduces theMAE by 13.2% and
8.16% on SSD and LFSD with only 18.1 GFLOPs and an astonishing
real-time speed of 70.2 FPS. Besides, we conduct detailed ablations
to verify the effectiveness of the proposed LE-SSM and AFM in
multi-scale local enhancement and selective cross-modality fusion,
respectively. Moreover, we extend our method to the RGB-T SOD
task and further demonstrate its prominent generalizability.

To sum up, in this paper we propose a novel RGB-D SOD system
(LEAF-Mamba) based on the SSM technique, where our main
contributions are threefold:

• We devise a novel local emphatic state space module (LE-
SSM) which performs a four-scale windowed selective scan
to enrich multi-scale local information with low computa-
tional cost.

• We introduce an SSM-based adaptive fusion module (AFM)
with amodality-specific selectivemechanism, which dynami-
cally interacts the complementary cues and fuses the reliable
content in RGB and depth features.

• Our system not only sets new records on 7 RGB-D SOD
benchmarks, but also achieves a low computation overhead
of 18.1 GFLOPs and a real-time inference speed of 70.2 FPS.
Also, it shows prominent generalizability on RGB-T SOD.

2 RELATEDWORK
2.1 RGB-D Salient Object Detection
RGB-D SOD combines RGB images with depth cues to identify the
most conspicuous objects in a scene. With the development of deep
learning technology, CNN-based methods are firstly proposed for
RGB-D SOD. Zhang et al. [82] introduce a complimentary interac-
tion module to discriminatively select useful representation from
the RGB and depth data. Ji et al. [30] propose a depth calibration
and fusion framework to calibrate the depth map and realize an
efficient fusion of two modalities. Wu et al. [74] present an efficient
RGB-D SODmethod based onmobile network and an implicit depth
restoration technique to strengthen the mobile backbones.

However, due to the confined receptive field of CNN, these meth-
ods are deficient in extracting global context. To this end, some
Transformer-based methods are proposed, which realize long-range
modeling by self-attention mechanism. Liu et al. [42] introduce a
triplet Transformer embedding module for modeling high-level
features. Pang et al. [48] propound a view-mixed Transformer to
excavate the global cues in intra-modal features and simplify the
cross-modal interaction and alignment. Cong et al. [12] set forth a
CNN-assisted Transformer architecture with point-aware interac-
tion and CNN-induced refinement. Despite their promising results,
these methods typically suffer from the quadratic scaling inherent
in the self-attention mechanism, particularly for the dual-modality
scenario [7, 8, 10, 20, 65]. Different from them, our proposed method
benefits from the linear overhead of Mamba, making a trade-off
between effectiveness and efficiency, as shown in Figure 1.
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Figure 2: The whole pipeline of our proposed LEAF-Mamba, which consists of two main components: local emphatic state
space module (LE-SSM) and adaptive fusion module (AFM). Please refer to Section 3 for details.

2.2 State Space Models
State space models (SSMs) [27, 53], with linear complexity, have
emerged as compelling alternatives to Transformers for modeling
long-range dependency. Recently, Gu et al. [26] propose the se-
lective state space model, Mamba, which demonstrates superior
performance over Transformers in NLP. Inspired by its remark-
able performance, researchers extend it to the domain of computer
vision. Zhu et al. [88] integrate SSM with bidirectional scanning,
making each patch related to another. Liu et al. [41] extend the scan-
ning in both horizontal and vertical directions to further interpret
spatial relationships. However, they elongate the distance between
adjacent tokens, overlooking the preservation of local 2D depen-
dency. To this end, Huang et al. [29] introduce a local scanning
strategy that divides images into distinct windows to capture local
dependencies while maintaining a global perspective. Despite its
effectiveness, it relies on the fixed-size window for local modeling,
limiting the diversity of local dependencies. In contrast, our pro-
posed LE-SSM adopts a four-way four-scale windowed scanning
strategy, which enriches the multi-scale local information.

SSMs have been preliminarily employed and explored in a wide
range of multi-modal tasks. Wan et al. [60] introduce a Siamese
Mamba network for multi-modal semantic segmentation with a
fusion module. Gao et al. [25] propose a multi-scale feature fusion
Mamba for multi-source remote sensing image classification. How-
ever, they treat dual modalities equally during the cross-modality
fusion, ignoring their complementarity and reliability. Conversely,
our SSM-based AFM selectively interacts with the complementary
cues and fuses the reliable messages in RGB and depth features.

3 METHODOLOGY
In this section, we first introduce some essential concepts of the
state space model. Then, we provide a detailed description of our
LEAF-Mamba, including its overall framework and module design.
Figure 2 illustrates the overall architecture of LEAF-Mamba.

3.1 Preliminaries
State Space Models. SSM is a linear time-invariant system that
maps an input sequence 𝑥 (𝑡) ∈ R𝑁 to an output sequence 𝑦 (𝑡) ∈
R𝑁 . They are mathematically represented by the following linear
ordinary differential equations:

ℎ′ (𝑡) = 𝑨ℎ(𝑡) + 𝑩𝑥 (𝑡),
𝑦 (𝑡) = 𝑪ℎ(𝑡) + 𝑫𝑥 (𝑡), (1)

where ℎ(𝑡) ∈ R𝑁 indicates a hidden state, ℎ′ (𝑡) ∈ R𝑁 refers to the
time derivative of ℎ(𝑡), and 𝑁 is the number of states. Additionally,
𝑨 ∈ R𝑁×𝑁 is the state transition matrix, 𝑩 ∈ R𝑁×1, 𝑪 ∈ R1×𝑁 are
projection matrices, and 𝑫 ∈ R𝑁×1 is a residual connection.

SSMs are continuous-time models, and are challenging to in-
corporate into deep learning networks. To address this, discrete
versions of SSMs are proposed. The ordinary differential equations
are discretized by the zero-order hold rule. A timescale parameter
Δ is introduced to convert the continuous parameters 𝑨 and 𝑩 into
discrete parameters 𝑨 and 𝑩, respectively, as:

𝑨 = exp(Δ𝑨),
𝑩 = (Δ𝑨)−1 (exp(Δ𝑨) − 𝑰 ) · Δ𝑩 ≈ Δ𝑩.

(2)
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The matrix 𝑩 can be approximated by applying a first-order Tay-
lor expansion to the term involving the matrix exponential. After
discretization, the SSM system can be reformulated as:

ℎ𝑡 = 𝑨ℎ𝑡−1 + 𝑩𝑥𝑡 ,

𝑦𝑡 = 𝑪ℎ𝑡 + 𝑫𝑥𝑡 .
(3)

Further, the models compute output through a global convolution.

𝑲 = (𝑪𝑩, 𝑪𝑨𝑩, . . . , 𝑪𝑨𝐿−1
𝑩),

𝑦 = 𝑥 ∗ 𝑲 ,
(4)

where 𝐿 is the length of the input sequence 𝑥 , and 𝑲 ∈ R𝐿 is a
structured convolutional kernel.
Selective Scan Mechanism. Traditional SSMs adopt a linear time-
invariant framework, wherein the projection matrices remain fixed
and unaffected by variations in the input sequence. However, this
static configuration results in a lack of attention on individual
elements within the sequence. To overcome this limitation, Mamba
[26] introduces a selective scan mechanism where the parameter
matrices become input-dependent. In this way, SSMs can better
model the complex interactions present in long sequences through
the transformation into linear time-varying systems.

3.2 Overview of LEAF-Mamba
The overall framework of our proposed LEAF-Mamba is shown in
Figure 2, which follows a standard encoder-decoder architecture.
The encoder is a dual-stream structure built upon VMamba [41],
which yields multi-stage features from RGB and depth images.
To enrich multi-scale local semantics, the last VMamba block of
each stage is substituted with our local emphatic state space mod-
ule (LE-SSM), resulting in local-enhanced dual-modality features
{𝐹𝑟

𝑖
}4
𝑖=1 and {𝐹𝑑

𝑖
}4
𝑖=1. Then, they are fed into the adaptive fusion

module (AFM) for attentive cross-modality interaction and inte-
gration. Specifically, AFM communicates the complementary cues
in {𝐹𝑟

𝑖
}4
𝑖=1 and {𝐹𝑑

𝑖
}4
𝑖=1 for inter-enhanced features {𝐹 ′𝑟

𝑖
}4
𝑖=1 and

{𝐹 ′𝑑
𝑖
}4
𝑖=1 which act as the inputs for next stage. Meanwhile, AFM

fuses the reliable content of {𝐹 ′𝑟
𝑖
}4
𝑖=1 and {𝐹 ′𝑑

𝑖
}4
𝑖=1 for RGB-D fea-

tures {𝐹 𝑓
𝑖
}4
𝑖=1. The multi-stage RGB-D features are put into an SSM-

based FPN [38] decoder for multi-level predictions {𝑃𝑖 }4𝑖=1 with
deep supervision, where the CBAM [67] is adopted to facilitate the
spatial- and channel-wise variation of the processing features. We
take 𝑃1 as the final prediction map.

3.3 Local Emphatic State Space Module
Early vision mamba methods [41, 78, 88] always flatten 2D plane
into 1D array along rows and columns, disrupting the proximity
of adjacent tokens. Although recent works [13, 29, 61] adopt the
windowed scan strategy for local modeling, they fail to capture the
multi-scale semantic cues due to the fixed window size. To solve this
problem, we propose a local emphatic state space module (LE-SSM),
which captures multi-view local dependencies via a multi-scale
windowed 2D selective scan (MSW-SS2D) mechanism.

The illustration of LE-SSM is provided in Figure 3 (a). Unlike the
Mamba [26] used in NLP, the LE-SSM consists of a single network
branch with two residual modules, mimicking the architecture
of Transformer block [15]. Meanwhile, the S6 block of Mamba
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is substituted with the newly proposed multi-scale windowed 2D
selective scan (MSW-SS2D), shown in Figure 3 (b). Specifically, given
an input as 𝑋 , MSW-SS2D first unfolds it into sequences along
four distinct traversal paths, i.e., horizontal (H) and vertical (V)
directions along with their flipped counterparts (HF and VF). Each
of them adopts the windowed selective scan strategy with a unique
window size. In this paper, the standard/flipped horizontal scan
adopts the window size of 1/2 while the standard/flipped vertical
scan adopts the window size of 4/8, denoted as H1, HF2, V4 and
VF8. Notably, the matching between directions and window sizes
can be set randomly because the rotation augmentation during the
training phase can make them fully connected. Then each sequence
is processed in parallel using a separate S6 block, and the resultant
sequences are reshaped and merged to form the output 𝑌 . The
whole procedure of MSW-SS2D can be formulated as:

𝑌 =
∑︁

Scan∈S Reshape(S6(Scan(𝑋 ))), (5)

where S = {H1,HF2,V4,VF8}, denoting the set of traversal paths.
In this case, MSW-SS2D achieves a four-way, four-scale win-

dowed selective scan, which enables the LE-SSM to effectively ex-
tract the multi-scale local information without extra computational
cost compared to SS2D [41].

3.4 Adaptive Fusion Module
Current SSM-based multi-modal methods [25, 60] typically treat the
cross-modality features equally during the fusion process, which
overlooks their complementarity and reliability. To this end, we
design an adaptive fusion module (AFM) to dynamically interact
with the complementary cues and fuse the reliable content in RGB
and depth features under the paradigm of SSM.

The whole structure of AFM is illustrated in Figure 4 (a), consist-
ing of two sequential processes: cross-modality interaction and
cross-modality fusion. Both of them follow the architecture of
VMamba block. For cross-modality interaction, the same-stage RGB
and depth features 𝐹𝑟 and 𝐹𝑑 are first fed into a cross-modality
second-order pooling (CSoP) layer to compute the modality-specific
similarity maps 𝑆𝑟 and 𝑆𝑑 . Then they are reversed to produce the
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distance maps 𝐷𝑟 and 𝐷𝑑 , which are utilized to select the discrim-
inative regions of the processing RGB and depth features 𝑋𝑟 and
𝑋𝑑 for complementary cross-modality interaction in the selective
interaction module (SIM). For cross-modality fusion, the interacted
dual-modality features 𝐹 ′𝑟 and 𝐹 ′𝑑 are also fed into a CSoP layer to
measure their similarity 𝑆 ′𝑟 and 𝑆 ′𝑑 . Then, a selective enhancement
module (SEM) is incorporated to weight the similar regions for
subsequent reliable cross-modality fusion 𝐹 𝑓 . We now depict the
technical details of CSoP, SIM and SEM, respectively.
Cross-modality Second-order Pooling. The structure of CSoP is
illustrated in Figure 4 (b). Take the CSoP in cross-modality interac-
tion as an example. We first preprocess the cross-modality features
𝐹𝑟 and 𝐹𝑑 with 1 × 1 convolution (C1×1) and downsampling (DS)
for reducing the number of their channels and spatial size to a fixed
𝐻 ×𝑊 ×𝐶 , so as to decrease the computational cost of the following
operations. Then we flatten them into tokens 𝑇 𝑟 and 𝑇𝑑 along the
spatial dimension and compute their covariance matrix 𝑀 . The
above process can be formulated as:

𝑇 𝑟 = Flatten(DS(C1×1 (𝐹𝑟 ))),

𝑇𝑑 = Flatten(DS(C1×1 (𝐹𝑑 ))),

𝑀𝑖, 𝑗 = Cov(𝑇𝑑
𝑖 ,𝑇

𝑟
𝑗 ) .

(6)

After that, we separately perform row-wise convolution (Crow) and
column-wise convolution (Ccol) on the covariance matrix 𝑀 for

modality-specific pooling. Each of them is followed by a linear
layer and a sigmoid function (𝜎) for channel scaling and nonlinear
activation respectively, outputting the weighted vectors𝑉 𝑟 and𝑉𝑑

of length 𝐻𝑊 , formulated as:

𝑉 𝑟 = 𝜎 (Linear(Ccol (𝑀))),

𝑉𝑑 = 𝜎 (Linear(Crow (𝑀))).
(7)

Finally, we postprocess the weighted vectors 𝑉 𝑟 and 𝑉𝑑 by re-
shaping them into 𝐻 ×𝑊 matrices and upsampling (US) them to
the original spatial size for modality-specific similarity 𝑆𝑟 and 𝑆𝑑 ,
written as:

𝑆𝑟 = US(Reshape(𝑉 𝑟 )),

𝑆𝑑 = US(Reshape(𝑉𝑑 )).
(8)

As such, our CSoP extends the traditional point-to-point sim-
ilarity to a points-to-points manner, which further explores the
relevance of cross-modality features from a global perspective.
Selective Interaction Module. The structure of SIM is illustrated
in Figure 4 (c). As demonstrated in [14], Transformers are SSMs,
with 𝑸 , 𝑲 and 𝑽 corresponding to 𝑪 , 𝑩 and the input 𝑥 . Inspired
by the cross-attention mechanism [3] that interchanges 𝑸 for in-
formation communication, we swap the 𝑪 matrices of RGB and
depth features in the process of selective scan for cross-modality
interaction. Moreover, the distance maps 𝐷𝑟 and 𝐷𝑑 are derived by
reversing 𝑆𝑟 and 𝑆𝑑 , namely 1 − 𝑆𝑟 and 1 − 𝑆𝑑 . By such means, 𝐷𝑟
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Table 1: Quantitative comparisons with state-of-the-arts on seven benchmark datasets. ↑ (↓) denotes higher the better (lower
the better). The best and second-best results are shown in Red and Blue, respectively. − means not available.

Backbone CNN Transformer SSM

Method DMRA+ C2DF DCMF CIR DIF MFUR LAFB MITF PICR CAVER CAT TPCL HFMD EM-T VST++ DCT LEAF
[31] [83] [62] [11] [80] [24] [61] [4] [12] [48] [54] [68] [43] [5] [40] [45] −

Publish TIP TMM TIP TIP TIP KBS TCSVT TCSVT MM TIP TMM TMM TIM TNNLS TPAMI TIP (Ours)
Year 2022 2022 2022 2022 2023 2024 2024 2022 2023 2023 2023 2023 2024 2024 2024 2024 –

N
JU

D

𝐹𝛽 ↑ .882 .899 .915 .928 .906 .937 .919 .926 .931 .923 .929 .930 .923 .935 .927 .934 .945
𝑆𝛼 ↑ .905 − .913 .925 − .920 − .923 .927 .920 .937 .926 .927 .931 .926 .932 .940
𝐸𝜉 ↑ .914 .919 .948 − .923 − .924 .957 − .951 .933 .959 .956 .961 .957 .959 .967
𝑀 ↓ .044 .038 .043 .035 .037 .035 .028 .030 .029 .031 .025 .028 .028 .027 .031 .031 .025

N
LP

R

𝐹𝛽 ↑ .880 .899 .906 .924 .906 .930 .905 .928 .928 .921 .916 .930 .913 .934 .922 .923 .939
𝑆𝛼 ↑ .926 − .922 .933 − .931 − .933 .935 .929 .939 .936 .931 .940 .934 .934 .945
𝐸𝜉 ↑ .952 .958 .954 − .960 − .958 .968 − .961 .968 .970 .964 .970 .966 .965 .976
𝑀 ↓ .026 .021 .029 .023 .020 .022 .021 .018 .019 .022 .018 .017 .021 .017 .020 .023 .016

SI
P

𝐹𝛽 ↑ .863 − − .896 .873 .910 .902 .913 − .906 .918 .922 .896 .920 .917 .910 .935
𝑆𝛼 ↑ .852 − − .888 − .890 − .899 − .893 .913 .902 .886 .903 .903 .899 .920
𝐸𝜉 ↑ .906 − − − .915 − .937 .940 − .933 .944 .946 .930 .944 .946 .942 .950
𝑀 ↓ .060 − − .052 .051 .049 .041 .040 − .042 .034 .035 .044 .039 .038 .038 .032

ST
ER

E

𝐹𝛽 ↑ .875 .892 .906 .914 .894 .919 .896 .910 .920 .911 .902 .922 .901 .926 .911 .919 .935
𝑆𝛼 ↑ .903 − .910 917 − .920 − .909 .921 .914 .925 .920 .900 .925 .913 .922 .933
𝐸𝜉 ↑ .920 .927 .946 − .930 − .930 .953 − .949 .935 .960 .943 .958 .952 .955 .958
𝑀 ↓ .043 .038 .043 .038 .036 .040 .037 .034 .031 .033 .030 .029 .040 .028 .035 .035 .026

SS
D

𝐹𝛽 ↑ .824 .848 .867 − − − .860 .862 − .854 − − .871 .875 .883 − .904
𝑆𝛼 ↑ .868 − .882 − − – − .877 − .874 − − .887 .885 .896 − .918
𝐸𝜉 ↑ .911 .911 .921 − − − .922 .914 − .924 − − .934 .935 .944 − .953
𝑀 ↓ .049 .047 .053 − − − .041 .047 − .043 − − .038 .039 .038 − .033

LF
SD

𝐹𝛽 ↑ .861 .863 .875 .883 .875 .891 − .876 .894 .886 .884 .888 .883 − .887 − .908
𝑆𝛼 ↑ .871 − .878 .875 − .863 − .874 .888 .882 .894 .892 .880 − .888 − .907
𝐸𝜉 ↑ .902 .883 .909 − .907 − − .911 − .921 .908 .926 .915 − .915 − .934
𝑀 ↓ .069 .065 .068 .068 .055 .075 − .063 .053 .056 .051 .049 .059 − .060 − .045

D
U
T-
D

𝐹𝛽 ↑ .911 .934 .932 .938 .940 .948 .930 .934 .951 .942 .951 .956 .951 − .948 .952 .958
𝑆𝛼 ↑ .919 − .928 .932 − .943 − .937 .943 .931 .953 .946 .950 − .943 .948 .952
𝐸𝜉 ↑ .948 .958 .958 − .958 − .957 .960 − .964 .971 .974 .971 − .966 .969 .973
𝑀 ↓ .035 .025 .035 .029 .025 .027 .027 .025 .020 .028 .020 .020 .019 − .022 .023 .019

Params (M)↓ 63.0 47.5 58.9 103.2 31.6 − 453.0 127.5 111.9 93.8 262.6 129.5 431.6 − 85.4 80.0 84.5
FLOPs (G)↓ 126.3 44.1 − 42.6 24.9 − 139.7 24.1 27.0 63.9 341.8 212.0 242.2 − 40.0 49.0 18.1

FPS↑ 22.0 33.4 − 54.0 − − 45.0 − 21.3 26.0 11.0 23.8 9.0 − 12.0 − 70.2

and𝐷𝑑 can focus on the complementary information from the coun-
terparts, and thus are utilized to weight 𝑪𝒅 and 𝑪𝒓 respectively.
The whole process of SIM can be formulated as follows.

𝑨𝒓 = exp(Δ𝑟𝑨𝒓 ), 𝑨𝒅 = exp(Δ𝑑𝑨𝒅 ),

𝑩𝒓 = Δ𝑟𝑩𝒓 , 𝑩𝒅 = Δ𝑑𝑩𝒅 ,

ℎ𝑟𝑡 = 𝑨𝒓ℎ𝑟𝑡−1 + 𝑩𝒓𝑋𝑟
𝑡 , ℎ

𝑑
𝑡 = 𝑨𝒅ℎ𝑑𝑡−1 + 𝑩𝒅𝑋𝑑

𝑡 ,

𝑌 𝑟
𝑡 = (𝐷𝑟𝑪𝒅 )ℎ𝑟𝑡 + 𝑫𝒓𝑋𝑟

𝑡 , 𝑌
𝑑
𝑡 = (𝐷𝑑𝑪𝒓 )ℎ𝑑𝑡 + 𝑫𝒅𝑋𝑑

𝑡 ,

(9)

where 𝑩, 𝑪 and Δ are projected from the input 𝑋 . 𝑨 and 𝑫 are
randomly initialized. 𝑡 denotes the time step.
Selective Enhancement Module. As shown in Figure 4 (d), the
design philosophy of the SEM is very similar to that of the SIM. To
be specific, the similarity maps 𝑆 ′𝑟 and 𝑆 ′𝑑 are separately utilized
to weight 𝑪′𝒓 and 𝑪′𝒅 , which enhances the reliability of the single-
modality features for subsequent fusion. The process of SEM can
be represented as:

𝑨′𝒓 = exp(Δ′𝑟𝑨′𝒓 ), 𝑨′𝒅 = exp(Δ′𝑑𝑨′𝒅 ),

𝑩′𝒓 = Δ′𝑟𝑩′𝒓 , 𝑩′𝒅 = Δ′𝑑𝑩′𝒅 ,

ℎ′𝑟𝑡 = 𝑨′𝒓ℎ′𝑟𝑡−1 + 𝑩′𝒓𝑋 ′𝑟
𝑡 , ℎ′𝑑𝑡 = 𝑨′𝒅ℎ′𝑑𝑡−1 + 𝑩′𝒅𝑋 ′𝑑

𝑡 ,

𝑌 ′𝑟
𝑡 = (𝑆 ′𝑟𝑪′𝒓 )ℎ′𝑟𝑡 + 𝑫′𝒓𝑋 ′𝑟

𝑡 , 𝑌 ′𝑑
𝑡 = (𝑆 ′𝑑𝑪′𝒅 )ℎ′𝑑𝑡 + 𝑫′𝒅𝑋 ′𝑑

𝑡 .

(10)

Thanks to AFM, the overall model can dynamically build up the
global relationship between cross-modality features, in turn achiev-
ing more comprehensive cross-modality interaction and fusion.

4 EXPERIMENTS
4.1 Experimental Setup
In the following, we state the datasets, evaluation metrics and train-
ing implementation. More details can be found in the Appendix.
Datasets. To evaluate the performance of our method, we conduct
experiments on seven widely used RGB-D SOD datasets, including
NJUD [32], NLPR [49], STERE [47], SIP [18], SSD [87], LFSD [37]
and DUT-D [50]. For a fair comparison, we follow the same training
settings as [42, 51], where 1485 samples from the NJUD, 700 samples
fromNLPR and 800 samples fromDUT-D are selected as the training
set. The rest of NJUD, NLPR and DUT-D, and all of STERE, SIP, SSD,
LFSD are used for testing.
EvaluationMetrics.We adopt four commonly used metrics includ-
ing F-measure (𝐹𝛽 ) [1], S-measure (𝑆𝛼 ) [16], E-measure (𝐸𝜉 ) [17] and
mean absolute error (𝑀) to quantitatively evaluate the performance.
For𝑀 , lower value is better. For others, higher is better.
Implementation Details. We adopt the VMamba-T [41] as en-
coder network, which is pre-trained on ImageNet-1K [34]. The
network input resolution is 256×256, following [48, 80]. The size of
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Figure 5: Qualitative results of our LEAF-Mamba and other representative methods.

{𝐻,𝑊 ,𝐶} in CSoP is fixed at {8, 8, 96}. We use pixel position-aware
loss [66] for multi-level supervision to pay different attention to the
hard and easy pixels. Adam [33] algorithm serves as our optimizer.

4.2 Comparison with State-of-the-arts
We compare our LEAF-Mamba with recent 16 state-of-the-art meth-
ods, in terms of quantitative and qualitative aspects.
Quantitative evaluation. Table 1 shows the quantitative results
of our methods against other 16 state-of-the-art methods on seven
benchmark datasets. It can be seen that our network outperforms
other advanced models across all the datasets in terms of most eval-
uation metrics, which demonstrates the superiority of our method
in efficacy. For instance, compared with the second best method
VST++ [40], our method improves the 𝐹𝛽 and MAE by 2.38% and
13.2% respectively on SSD dataset. Meanwhile, we compare our
method with other state-of-the-art models in terms of parameters,
FLOPs and FPS to evaluate the model size, computation overhead
and inference speed, respectively. As shown in the bottom of Table 1,
the LEAF-Mamba achieves the lowest FLOPs of 18.1G and the high-
est FPS of 70.2, with comparable parameters of 84.5M, validating
its advances in computational efficiency.
Qualitative evaluation. In Figure 5, we visualize some challenging
scenes and results generated by our method and other top-ranking
models. As we can see, our model can accurately segment objects in
varying scales including large object (Row 1), middle object (Row 2-
3), small object (Row 4) and multiple objects (Row 6), which demon-
strates the effectiveness of our LE-SSM in extracting multi-scale
information. Meanwhile, for objects with complex backgrounds
(Row 3 and 7) or low-quality depth maps (Row 4), our method

Table 2: Ablation analyses of each component on the NJUD
and SSD datasets. bold: top-1 results.

No. Configuration NJUD SSD

𝐹𝛽 ↑ 𝑀 ↓ 𝐹𝛽 ↑ 𝑀 ↓

#1 Baseline .917 .030 .851 .044
#2 + LE-SSM .931 .028 .872 .039
#3 + AFM .940 .026 .891 .035
#4 + LE-SSM + AFM (LEAF) .945 .025 .904 .033

is able to generate fine predictions that are more consistent with
the ground truth, benefiting from the promising cross-modality
interaction achieved by our proposed AFM.

4.3 Ablation Studies
We conduct ablation studies to verify the effectiveness of two main
components (LE-SSM and AFM) in the LEAF-Mamba on the NJUD
and SSD datasets, and choose 𝐹𝛽 and MAE for evaluation. The
quantitative results are summarized in Table 2.
Components ablation. In this part, we firstly evaluate the effec-
tiveness of the key components (namely, LE-SSM and AFM) in our
LEAF-Mamba. Results are reported in Table 2. Our baseline (No.
#1) employs a two-stream VMamba-based network where the dual-
modality features with the same resolution are added directly. De-
tailed baseline architecture is presented in the Appendix. Compared
with baseline, our LE-SSM/AFM obtains numerical improvements,
e.g., 2.47%/4.7% and 11.4%/20.0% increase on SSD in terms of 𝐹𝛽
and MAE, respectively. Furthermore, when concurrently adopting
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Table 3: Quantitative results of various scanning strategies
for local enhancement (LE). bold: top-1 results.

No. Scanning Strategy NJUD SSD

𝐹𝛽 ↑ 𝑀 ↓ 𝐹𝛽 ↑ 𝑀 ↓

#1 SS2D .917 .030 .851 .044
#5 Continuous scan [78] .919 .030 .856 .043
#6 Fixed windowed scan [29] .925 .029 .863 .041
#2 MSW-SS2D (Ours) .931 .028 .872 .039

Table 4: Ablation analyses of AFM. bold: top-1 results.

No. CSoP SIM SEM NJUD SSD

𝐹𝛽 ↑ 𝑀 ↓ 𝐹𝛽 ↑ 𝑀 ↓

#1 .917 .030 .851 .044

#7 ✓ .924 .029 .863 .042
#8 ✓ .921 .030 .858 .043
#9 ✓ ✓ .927 .028 .867 .041

#10 ✓ ✓ .933 .027 .879 .038
#11 ✓ ✓ .926 .028 .872 .040
#3 ✓ ✓ ✓ .940 .026 .891 .035

LE-SSM and AFM, our LEAF-Mamba raises the gains to 6.23% and
25%, showing the synergy between the two modules.
Scanning strategy in LE-SSM. We assess the effectiveness of
various scanning strategies in LE-SSM. Specifically, we compare
our MSW-SS2D with SS2D [41], continuous scan [78] and fixed
windowed scan [29]. The detailed illustration of them can be found
in the Appendix. The results are presented in Table 3. It can be
observed that, our MSW-SS2D strategy surpasses all counterparts
with a clear margin, demonstrating the positive gains of compre-
hensively modeling local dependencies in a multi-scale manner.
Design of AFM. In the following, we evaluate the effect of core
components in our AFM, i.e., CSoP, SIM and SEM. The results
are reported in Table 4. In the absence of CSoP, independently
applying the SIM (or SEM) achieves performance boost with 1.41%
(0.82%) and 4.54% (2.27%) on the SSD dataset in terms of 𝐹𝛽 and
𝑀 metrics. Moreover, adopting them together yields impressive
performance gains of 1.88% and 6.81%. These observations admit the
effectiveness of SSM mechanism in dual-modality interaction and
single-modality enhancement. Based on these findings, we conduct
in-depth exploration on the role of CSoP-based selective mechanism
for SIM and SEM, respectively (No. #10 & #11). All of these results
typically make further improvements, benefiting from the adaptive
weights from CSoP. Ultimately, our AFM (with CSoP, SIM and SEM)
achieves the best performance. More detailed empirical studies on
CSoP, SIM and SEM are provided in the Appendix.

4.4 Application to RGB-T SOD
To validate the generalization ability of LEAF-Mamba, we extend it
to the RGB-Thermal (RGB-T) SOD task and conduct experiments
on three public RGB-T SOD datasets, i.e., VT821 [63], VT1000 [58],
and VT5000 [57]. Following [48, 56], the training set contains 2500
images from VT5000, with the remaining images used for testing.

Table 5: Quantitative comparisons with recent RGB-T SOD
methods on three benchmarks. The best two results are
shown in Red and Blue. −means not avaliable.

Method CAVER LSNet CMDBIF XMSNet LAFB ConTriNet LEAF
[31] [86] [77] [76] [64] [55] (Ours)

Publish TIP TIP TCSVT MM TCSVT TPAMI –
Year 2023 2023 2023 2023 2024 2024 –

V
T8
21

𝐹𝛽 ↑ .877 .827 .855 .859 .843 .878 .885
𝑆𝛼 ↑ .898 .877 .882 .906 − .915 .926
𝐸𝜉 ↑ .928 .911 .927 .929 .915 .940 .943
𝑀 ↓ .027 .033 .032 .028 .043 .022 .020

V
T1
00
0 𝐹𝛽 ↑ .939 .887 .914 .903 .905 .918 .926

𝑆𝛼 ↑ .938 .924 .927 .936 − .941 .945
𝐸𝜉 ↑ .949 .936 .967 .945 .945 .954 .962
𝑀 ↓ .017 .022 .019 .018 .018 .015 .015

V
T5
00
0 𝐹𝛽 ↑ .882 .827 .869 .871 .857 .898 .893

𝑆𝛼 ↑ .899 .876 .886 .907 − .923 .919
𝐸𝜉 ↑ .941 .916 .937 .939 .931 .956 .958
𝑀 ↓ .028 .036 .032 .028 .030 .020 .021

RGB Thermal GT Ours XMSNet CAVER

Figure 6: Visual comparisons on RGB-T SOD.

We compare our network with 6 recent RGB-T SOD methods
and show the quantitative results in Table 5. It can be seen that our
model achieves overall competitive performance on the three bench-
marks, e.g., with an improvement of 1.20% and 9.09% on VT821 in
term of 𝑆𝛼 and MAE. Additionally, the visual comparisons shown
in Figure 6 indicate that LEAF-Mamba excels in challenging sce-
narios such as low-quality thermal images, complex backgrounds
and multi-scale objects, further demonstrating its effectiveness and
prominent generalizability on multi-modality tasks.

5 CONCLUSION
In this paper, we propose a novel SSM-based system (LEAF-Mamba)
to address both efficacy and efficiency bottlenecks in existing RGB-
D salient object detection. We develop a local emphatic state space
module equipped with the multi-scale windowed scanning strategy
to capture multi-scale local dependencies in the process of feature
extraction. We also design an SSM-based adaptive fusion module to
dynamically select the discriminative regions of two modalities for
complementary cross-modality interaction, as well as the similar
ones for reliable cross-modality fusion. Experimental results on
seven benchmarks show superior performance of our method over
16 state-of-the-art models in both accuracy and efficiency. Further-
more, extensive ablation studies demonstrate the effectiveness of
each proposed component.
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Appendix of " LEAF-Mamba: Local Emphatic and Adaptive
Fusion State Space Model for RGB-D Salient Object Detection"

Overview
This Appendix provides additional details and results that comple-
ment the main manuscript, which are omitted due to page limita-
tions. The contents are organized as follows:

• Dataset Specification in § A;
• Metrics Description in § B;
• Experimental Implementation in § C;
• Architecture of Baseline in § D;
• Scanning Strategy in § E;
• Additional Experiments in § F;
• Feature Visualization in § G.
• Failure Cases in § H.

A Datasets
We conduct extensively experiments on ten multi-modality salient
object detection (SOD) datasets, including seven RGB-Depth (RGB-
D) benchmarks and three RGB-Thermal (RGB-T) ones. The prior
datastes includes NJUD [A7], NLPR [A15], STERE [A13], SIP [A5],
SSD [A25], LFSD [A10], and DUT-D [A16]; and the latter ones
involve VT821 [A22], VT1000 [A21] and VT5000 [A20]. The char-
acteristics of each dataset are summarized below.
RGB-D Datasets. NJUD [A7] contains 1,985 pairs of RGB and
depth images collected from the Internet, 3D movies, and stereo
photographs. Dataset NLPR [A15] includes 1,000 RGB-D pairs cov-
ering a variety of indoor and outdoor scenes. STERE [A13] con-
sists of 1,000 stereoscopic images sourced from Flickr, NVIDIA
3D Vision Live, and the Stereoscopic Image Gallery. SIP [A5] is a
high-resolution dataset comprising 929 image pairs captured in out-
door environments with complex lighting and diverse human poses.
SSD [A25] includes 80 samples from both indoor and outdoor scenes.
LFSD [A10] provides 100 RGB-D image pairs designed for saliency
detection in light field images. DUT-D [A16] consists of 1,200 RGB-
D pairs, with 800 captured indoors and 400 captured outdoors. We
follow the training protocol as in previous works [A16, 17] and
[A12]. Specifically, 1,485 samples from NJUD, 700 samples from
NLPR, and 800 samples from DUT-D are used for training. The
remaining samples from NJUD, NLPR, and DUT-D, along with all
samples from STERE, SIP, SSD, and LFSD, are used for testing.
RGB-T Datasets. VT821 [A22] contains 821 manually aligned
RGB-T image pairs; VT1000 [A21], comprising 1,000 image pairs
captured in relatively simple scenes with well-aligned sensors; and
VT5000 [A20], which includes 5,000 high-resolution and diverse
image pairs with minimal misalignment. Following the training
protocol of [A14, 19], we use 2,500 image pairs from VT5000 for
training, while the remaining samples from VT5000, along with all
images from VT821 and VT1000, are used for evaluation.

B Evaluation Metrics
We employ four popular metrics to assess the performance, fol-
lowing [A2, 18]. F-measure (𝐹𝛽 ) [A1] is a region-based similarity

metric based on precision and recall. S-measure (𝑆𝛼 ) [A3] focuses
on region-aware and object-aware structural similarities between
the saliency map and the ground truth. E-measure (𝐸𝜉 ) [A4] is char-
acterized as both image-level statistics and local pixel matching.
Mean absolute error (MAE, 𝑀) measures the average difference
between the prediction and the ground truth in the pixel level. The
lower value is better for𝑀 and the higher is better for others.

C Training Implementation
Our proposed LEAF-Mamba is implemented using the PyTorch
toolkit and trained on a PC equipped with a single NVIDIA RTX
4090 GPU. VMamba-T [A11] is employed as the encoder network,
initialized with weights pre-trained on ImageNet-1K [A9]. The
size of {𝐻,𝑊 ,𝐶} in the CSoP module is fixed at {8, 8, 96}. Follow-
ing [A14, 24], all images are uniformly resized to 256×256 during
both training and inference. During training phase, random flipping
and random rotation are employed for data augmentation to allevi-
ate overfitting. The Adam algorithm [A8] serves as the optimizer
with a mini-batch size of 8. The initial learning rate is set to 1e-4
and decayed by a factor of 10 every 60 epochs. The training process
runs for a total of 200 epochs.

D Architecture of Baseline
The detailed architecture of baseline is illustrated in Figure A1. We
adopt the two-stream VMamba-T as encoder which is initialized by
the parameters pre-trained on ImageNet-1K. The RGB and depth fea-
tures with the same resolution are added directly for cross-modality
fusion to generate RGB-D features. The multi-stage RGB-D features
are delivered into an SSM-based FPN-like decoder for prediction.
Each decoder block contains one upsample layer, one VMamba
block and one CBAM.

E Scanning Strategy
We illustrate various scanning strategy counterparts in Figure A2.
As shown in figure, SS2D [A11] performs the row-wise and column-
wise scanning along the same direction. Different from SS2D, con-
tinuous scan [A23] reverses the scanning direction in adjacent
lines, leading to a Zigzag scanning path, which partially reserves
the local proximity. In addition, fixed windowed scan [A6] splits
the feature map into several local regions and performs SS2D-like
scanning in each window. In contrast to these previous works,
our MSW-SS2D concurrently considers multi-scale semantics in
once four-way scanning. Therefore, our MSW-SS2D is potential to
capture multi-scale local dependencies. Equipped with the MSW-
SS2D, our LEAF-Mamba achieves superior performance on both the
quantitative and qualitative experiments in Table 3 and Figure 5 of
the manuscript, demonstrating its advance in detecting multi-scale
salient objects.
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F Additional Experiments
In this section, we elaborately validate the effects of some compo-
nents in our method, including CSoP, SIM and SEM. The experi-
ments are conducted on NJUD and SSD datasets and 𝐹𝛽 and𝑀 are
chosen for evaluation. The identical configuration are denoted in
the same color. The best result is highlighted in bold.

F.1 Ablation Study on CSoP
Similarity. Initially, we evaluate the devise of CSoP, including the
similarity function and pooling approach. Results are presented
in Table A1. In the first pannel, we compare two similarity imple-
mentation: a point-to-point cosine similarity (No. #A2) and a global
cross-covariance matrix (No. #A3, indicating Eqn. (7) in manuscript).
To be specific, for the RGB token and depth token 𝑇 𝑟 ∈ R𝐻𝑊 ×𝐶

and 𝑇𝑑 ∈ R𝐻𝑊 ×𝐶 , the cosine similarity between 𝑇 𝑟
𝑖
and 𝑇𝑑

𝑖
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where F (·) denotes the cosine similarity function, notation ⟨·, ·⟩
and ∥ · ∥ indicate inner production and ℓ2 normalization operation
respectively. And the cross-covariance similarity for𝑇 𝑟
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where notation H (·) denotes the cross-covariance similarity func-
tion. From the results, we can observe that, considering similarity
in CSoP obtains performance gains over baseline (No. #A1). In ad-
dition, covariance similarity is superior to the cosine one with an
advance of 1.59% and 7.89% on 𝐹𝛽 and 𝑀 metric of SSD dataset.
Thus, covariance similarity is used as the default setting in the
CSoP.
Pooling. In the second pannel of Table A1, we assess various pool-
ing functions for the covariance similarity matrix𝑀𝐶𝑜𝑣 . Among all
pooling implementations, the convolutional pooling achieves the
best performance. It leads average/max pooling over 1.25%/0.91%
and 7.89%/0.54% on 𝐹𝛽 and𝑀 . Due to its superiority, convolution
pooling serves as the default configuration for CSoP.

F.2 Ablation Study on SIM
In this part, we evaluate the devise of SIM. To be specific, we com-
pare the various swap objects in cross-modality interaction op-
eration, namely 𝑋 , 𝑩 and 𝑪 . As shown the results in Table A2,
considering the cross-modality interaction (No. #A6&A7&A8) ob-
tains novel performance gains over baseline (No. #A1). Moreover,
among all cross-modality interaction implementation, swapping
𝑪 obtains the best performance. Based on these findings, our SIM
module select 𝑪 to perform modality knowledge promotion.

F.3 Ablation Study on SEM
In addition, we consider various weighting objects in SEM. We
report the results of weighting various candidates (𝑋 , 𝑩 and 𝑪) in

Table A1: Ablation analyses of CSoP module on the NJUD
and SSD datasets. bold: top-1 results. Numbers shown in gray
indicates to those referenced in the manuscript.

No. Similarity
NJUD SSD

𝐹𝛽 ↑ 𝑀 ↓ 𝐹𝛽 ↑ 𝑀 ↓

#A1 (#1) − .917 .030 .851 .044
#A2 Cosine .932 .027 .877 .038
#A3 (#3) Covariance (AFM) .940 .026 .891 .035

No. Pooling
NJUD SSD

𝐹𝛽 ↑ 𝑀 ↓ 𝐹𝛽 ↑ 𝑀 ↓

#A1 (#1) − .917 .030 .851 .044
#A4 AvgPool .933 .027 .880 .038
#A5 MaxPool .935 .027 .883 .037
#A3 (#3) ConvPool (AFM) .940 .026 .891 .035

Table A2: Ablation analyses of swap feature in SIM on the
NJUD and SSD datasets. bold: top-1 results. Numbers shown
in gray indicates to those referenced in the manuscript.

No. Cross-modality
Interaction Swap

NJUD SSD

𝐹𝛽 ↑ 𝑀 ↓ 𝐹𝛽 ↑ 𝑀 ↓

#A1 (#1) × − .917 .030 .851 .044
#A6 ✓ X .919 .030 .855 .044
#A7 ✓ 𝑩 .921 .029 .857 .043
#A8 (#7) ✓ 𝑪 .924 .029 .863 .042

Table A3: Ablation analyses ofweighting object in SEMon the
NJUD and SSD datasets. bold: top-1 results. Numbers shown
in gray indicates to those referenced in the manuscript.

No. Weighting
NJUD SSD

𝐹𝛽 ↑ 𝑀 ↓ 𝐹𝛽 ↑ 𝑀 ↓

#A1 (#1) − .917 .030 .851 .044
#A9 X .925 .028 .864 .042
#A10 𝑩 .923 .029 .867 .041
#A11 (#11) 𝑪 .926 .028 .872 .040

Table A3. As we can see, considering the different roles and relia-
bility of each features generally performs better than the equally
regarding approach (baseline, No. #A1). Among various weight-
ing options, 𝑪 lags its counterparts 𝑋 /𝑩 with a clear margin of
0.93%/0.58% and 4.76%/2.44% in 𝐹𝛽 and𝑀 on the SSD dataset. Ac-
cordingly, weighting on 𝑪 is set to the default configuration in our
SEM module.
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Figure A3: Visualization analyses of the LEAF-Mamba.

RGB Depth GT Ours

Figure A4: Failure cases illustration.

G Feature Visualization
Intuitively, we visualize some feature maps with different configu-
rations in Figure A3. As we can see, compared with the baseline, the
model with LE-SSM pays more attention to the multi-scale objects
(Row 1) and presents better edge details (Row 3), which verifies the
effectiveness of LE-SSM in modeling multi-scale local dependencies.
With the incorporation of AFM, RGB and depth modalities exhibit
improved collaboration. Concretely, for complex background (Row
3) or low-quality depth (Row 2), AFM can make full use of the
complementary cue in both modalities as well as exclude their un-
reliable content, thus contributing to a more accurate prediction.
With LE-SSM and AFM combined, our LEAF-Mamba can focus on
the salient objects with the consistency of the ground truth.

H Failure Cases
To provide a more comprehensive evaluation of LEAF-Mamba, we
present several failure cases in Fig.A4. In the first row, when both
RGB and depth inputs are of low quality, the model struggles to
extract insightful knowledge from either modality, resulting in
inaccurate predictions. Moreover, certain challenging scenes also
present inherent difficulties, such as transparent glass in row #2
and a partially occluded kite in row #3.
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